GAVRYLKIV V.M.

SUPEREXTENSIONS OF CYCLIC SEMIGROUPS

Given a cyclic semigroup S we study right and left zeros, singleton left ideals, the minimal ideal, left cancelable and right cancelable elements of superextensions $\lambda(S)$ and characterize cyclic semigroups whose superextensions are commutative.

Key words and phrases: cyclic semigroup, maximal linked system, superextensions.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: vgavrylkiv@gmail.com

INTRODUCTION

This paper is devoted to describing the structure of superextensions of cyclic semigroups. The thorough study of algebraic properties of superextensions of semigroups was started in [1, 2, 3, 4, 10], where we focused at describing of superextensions of groups, and continued in [5, 6], where we studied the structure of superextensions of semilattices and inverse semigroups.

A family F of nonempty subsets of a set X that is closed under taking supersets and finite intersections is called a filter. A filter U is called an ultrafilter if $U = F$ for any filter F containing U. A family of subsets of a set X is called a linked system if intersection of any two elements is nonempty. A linked system M is said to be a maximal linked system if $M = \mathcal{L}$ for any linked system \mathcal{L} containing M. The family $\beta(X)$ of all ultrafilters on a set X is called the Stone-Čech compactification, and the family $\lambda(X)$ of all maximal linked systems is well-known [11, 12] as the superextension of a set X.

Each map $f : X \to Y$ induces a map (see [8])

$$
\lambda f : \lambda(X) \to \lambda(Y), \quad \lambda f : \mathcal{M} \mapsto \langle f(M) \subset Y : M \in \mathcal{M} \rangle.
$$

Here for a family B of nonempty subsets of a set Y by $\langle B \subset Y : B \in B \rangle = \{ A \subset Y : \exists B \in B \ (B \subset A) \}$, we denote the family $\langle B \subset Y : B \in B \rangle$. An ultrafilter $\langle \{ x \} \rangle$, generated by a singleton $\{ x \}$, $x \in X$, is called principal. We consider $X \subset \beta(X) \subset \lambda(X)$ if each point $x \in X$ is identified with the principal ultrafilter $\langle \{ x \} \rangle$ generated by the singleton $\{ x \}$.

It was shown in [9] that any associative binary operation $* : S \times S \to S$ can be extended to an associative binary operation $\circ : \lambda(S) \times \lambda(S) \to \lambda(S)$ by the formula

$$
\mathcal{L} \circ \mathcal{M} = \langle \bigcup_{a \in L} a \ast M_a : L \in \mathcal{L}, \quad \{ M_a \}_{a \in L} \subset \mathcal{M} \rangle
$$

© Gavrylkiv V.M., 2013
for maximal linked systems \(\mathcal{L}, \mathcal{M} \in \lambda(S) \). In this case the Stone-Čech compactification \(\beta(S) \) is a subsemigroup of the superextension \(\lambda(S) \).

A nonempty subset \(I \) of a semigroup \((S, \ast) \) is called an ideal (resp. a right ideal, a left ideal) if \(I \ast S \cup S \ast I \subset I \) (resp. \(I \ast S \subset I, S \ast I \subset I \)). An element \(z \) of a semigroup \((S, \ast) \) is called a zero (resp. a left zero, a right zero) in \(S \) if \(a \ast z = z \ast a = z \) (resp. \(z \ast a = z, a \ast z = z \)) for any \(a \in S \). It is clear that \(z \in S \) is a zero (resp. a left zero, a right zero) in \(S \) if and only if the singleton \(\{z\} \) is an ideal (resp. a right ideal, a left ideal) in \(S \). An ideal \(I \subset S \) is called minimal if any ideal of \(S \) that lies in \(I \) coincides with \(I \). By analogy we define minimal left and minimal right ideals of \(S \). The union \(K(S) \) of all minimal left (right) ideals of \(S \) coincides with the minimal ideal of \(S \), see [11, theorem 2.8]. A semigroup \((S, \ast) \) is said to be a right zeros semigroup if \(a \ast b = b \) for any \(a, b \in S \). A map \(\phi : S \to T \) between semigroups \((S, \ast) \) and \((T, \circ) \) is called a homomorphism if \(\phi(a \ast b) = \phi(a) \circ \phi(b) \) for any \(a, b \in S \). A homomorphism \(\phi : S \to I \) from a semigroup \(S \) into an ideal \(I \subset S \) is called a retraction if \(\phi(a) = a \) for any element \(a \in I \). An element \(a \) of a semigroup \(S \) is called left cancelable (resp. right cancelable) if for any points \(x, y \in S \) the equation \(ax = ay \) (resp. \(xa = ya \)) implies \(x = y \). This is equivalent to saying that the left (resp. right) shift \(l_a : S \to S, l_a : x \mapsto a \ast x \) (resp. \(r_a : S \to S, r_a : x \mapsto x \ast a \)) is injective. A semigroup \(S \) is called left (right) cancellative if all elements of \(S \) are left (right) cancelable. A semigroup that is both left and right cancellative is said to be cancellative.

A semigroup \(\langle a \rangle = \{a^n\}_{n \in \mathbb{N}} \) generated by a single element \(a \) is called cyclic. If a cyclic semigroup is infinite, then it is isomorphic to the additive semigroup \(\mathbb{N} \). A finite cyclic semigroup \(S = \langle a \rangle \) also has very simple structure (see [7]). There are positive integer numbers \(r \) and \(m \) called the index and the period of \(S \) such that: (i) \(S = \langle a, a^2, \ldots, a^{m+r-1} \rangle \) and \(m + r - 1 = |S| \); (ii) for any \(i, j \in \omega \) the equality \(a^{r+i} = a^{r+j} \) holds if and only if \(i \equiv j \mod m \); (iii) \(C_m = \{a^r, a^{r+1}, \ldots, a^{m+r-1}\} \) is the minimal ideal, a cyclic and maximal subgroup of \(S \) with the neutral element \(e = a^m \in C_m \), where \(m \) divides \(n \).

From now on we denote by \(C_{r,m} \) a finite cyclic semigroup of index \(r \) and period \(m \), and maximal subgroup of \(C_{r,m} \) is denoted by \(C_m \).

1 Homomorphisms, right, left zeros and minimal (left) ideals

Proposition 1.1. For any homomorphism \(\phi : S \to T \) between semigroups \((S, \ast_1) \) and \((T, \ast_2) \) the induced map \(\lambda \phi : \lambda(S) \to \lambda(T) \) is a homomorphism of the semigroups \((\lambda(S), \circ_1) \) and \((\lambda(T), \circ_2) \).

Proof. Given two maximal linked systems \(\mathcal{L}, \mathcal{M} \in \lambda(S) \) observe that

\[
\lambda \phi(\mathcal{L} \circ_1 \mathcal{M}) = \lambda \phi\left(\bigcup_{x \in L} x \ast_1 M_x : L \in \mathcal{L}, \{M_x\}_{x \in L} \subset \mathcal{M} \right)
\]

\[
= \langle \phi\left(\bigcup_{x \in L} x \ast_1 M_x \right) : L \in \mathcal{L}, \{M_x\}_{x \in L} \subset \mathcal{M} \rangle
\]

\[
= \langle \bigcup_{x \in L} \phi(x) \ast_2 \phi(M_x) : L \in \mathcal{L}, \{M_x\}_{x \in L} \subset \mathcal{M} \rangle
\]

\[
= \langle \bigcup_{x \in \phi(L)} x \ast_2 \phi(M_x) : L \in \mathcal{L}, \{\phi(M_x)\}_{x \in \phi(L)} \subset \lambda \phi(\mathcal{M}) \rangle
\]

\[
= \langle \phi(L) : L \in \mathcal{L} \rangle \circ_2 \langle \phi(M) : M \in \mathcal{M} \rangle = \lambda \phi(\mathcal{L}) \circ_2 \lambda \phi(\mathcal{M}).
\]

\(\square\)
Let us note that for a subsemigroup T of a semigroup S the homomorphism $i : \lambda(T) \to \lambda(S)$, $i : A \to \langle A \rangle_S$ is injective, and thus we can identify the semigroup $\lambda(T)$ with the subsemigroup $i(\lambda(T)) \subset \lambda(S)$.

Lemma 1.1. Let I be an ideal of a semigroup S. If a map $\varphi : S \to I$ is a retraction, then the map $\lambda \varphi : \lambda(S) \to \lambda(I)$ is a retraction too.

Proof. Indeed, let $A \in \lambda(I)$, $M \in \lambda(S)$, then $A \circ M = \left\langle \bigcup_{a \in A} a * M_a : A \in A, A \subset I, \{M_a\}_{a \in A} \subset M \right\rangle \in \lambda(I)$. By analogy $M \circ A \in \lambda(I)$, and therefore $\lambda(I)$ is an ideal of the semigroup $\lambda(S)$. If $A \in \lambda(I)$, then $\lambda \varphi(A) = \langle \varphi(A) : A \subset I, A \in A \rangle = \langle A \subset I : A \in A \rangle = A$ and hence $\lambda \varphi$ is a retraction. \[\square\]

Lemma 1.2. Let I be an ideal of a semigroup S and a map $\varphi : S \to I$ is a retraction. The semigroup S has a right (left) zero if and only if the semigroup I has a right (left) zero, and all right and left zeros of the semigroup S are contained in I.

Proof. Let z be a right (left) zero of the semigroup S, that is $sz = z$ ($zs = z$) for any $s \in S$. Since φ is a homomorphism, $\varphi(s) \varphi(z) = \varphi(z)$ ($\varphi(z) \varphi(s) = \varphi(z)$). Specifically for any $s \in I$ the equality $\varphi(s) = s$ holds, and then $s \varphi(z) = \varphi(s) \varphi(z) = \varphi(z)$ ($\varphi(z) s = \varphi(z) \varphi(s) = \varphi(z)$). Consequently, $\varphi(z)$ is a right (left) zero of the semigroup I.

Let $z \in I$ be a right (left) zero of the semigroup I. Since I is an ideal, then for any $s \in S$ we have that $sz, zs \in I$, and hence $sz = \varphi(sz) = \varphi(s) \varphi(z) = \varphi(s) z = z (zs = \varphi(zs) = \varphi(z) \varphi(s) = z \varphi(s) = z)$. Consequently, z is a right (left) zero of the semigroup S.

If z is a right (left) zero of the semigroup S, then $z = sz \in I$ ($z = zs \in I$), where $s \in I$. Therefore, all right (left) zeros of the semigroup S are contained in I. \[\square\]

Let e be the neutral element of the maximal subgroup C_m of a cyclic semigroup $C_{r,m}$.

Lemma 1.3. The map $\varphi : C_{r,m} \to C_m, \varphi(x) = ex$ is a retraction and $\varphi(x)y = xy$ for any $x \in C_{r,m}$ and $y \in C_m$.

Proof. Since the semigroup C_m is an ideal of the semigroup $C_{r,m}$, $\varphi(x) = ex \in C_m$. Consequently, $\varphi(xy) = exy = exy = exy = \varphi(x) \varphi(y)$ for any $x, y \in C_{r,m}$ and $\varphi(x) = ex = x$ for $x \in C_m$. Hence the map $\varphi : C_{r,m} \to C_m$ is a retraction. Further for any $x \in C_{r,m}$ and $y \in C_m$ we have that $xy \in C_m$, and therefore $\varphi(xy) = xy$. On the other hand, $\varphi(xy) = \varphi(x) \varphi(y) = \varphi(x)y$, since $y \in C_m$. \[\square\]

Combining Lemmas 1.1–1.3 we get

Proposition 1.2. The semigroup $\lambda(C_{r,m})$ contains a right (left) zero if and only if its subgroup $\lambda(C_m)$ contains a right (left) zero. Each right (left) zero of $\lambda(C_{r,m})$ belongs to $\lambda(C_m)$.

It was proved in [1] that the semigroup $\lambda(G)$ possesses a right zero if and only if the group G is periodic and each element of G has odd order. Since each element of a finite group G has odd order if and only if the group G has odd order, Proposition 1.2 implies the following characterization of superextensions of finite cyclic semigroups that have right zeros.

Theorem 1. The superextension $\lambda(C_{r,m})$ of a finite cyclic semigroup $C_{r,m}$ has a right zero if and only if the period m of the cyclic semigroup $C_{r,m}$ is an odd number.
Proposition 1.3. The superextension of the infinite cyclic semigroup has neither right nor left zeros.

Proof. Let \(\langle a \rangle = \{a, a^2, \ldots, a^n \ldots \} \) be the infinite cyclic semigroup and \(M \in \lambda(\langle a \rangle) \). First observe that if \(\langle a \rangle = A \cup B \) is any partition of the set \(\langle a \rangle \), then either \(A \in M \) or \(B \in M \). Indeed, if \(A \notin M \), then \(M \cap B \neq \emptyset \) for any \(M \in M \), and thus the maximality of \(M \) implies that \(B \in M \). Consider the partition \(\langle a \rangle = A \cup B \), where \(A = \{a, a^3, \ldots, a^{2k-1}, \ldots \} \), \(B = \{a^2, a^4, \ldots, a^{2k}, \ldots \} \). Assume that a maximal linked system \(M \) is a right (left) zero of the semigroup \(\langle a \rangle \). Then for any \(x \in \langle a \rangle \) we have \(\langle \{x\} \rangle \circ M = M (M \circ \langle \{x\} \rangle = M) \), and therefore \(xM \in M (Mx \in M) \) for any \(M \in M \). If \(A \in M \), then \(B = aA = Aa \in M \), that is impossible, since \(A \cap B = \emptyset \). By analogy, if \(B \in M \), then \(A \cap aB = Ba \in M \). This contradiction implies that the superextension of the infinite cyclic semigroup contains neither right nor left zeros. \(\square \)

It was proved in [1] that for the semigroup \(\lambda(G) \) has a (left) zero if and only if a group \(G \) is of order \(|G| \in \{1,3,5\} \).

Consequently, Proposition 1.2 implies the following characterization of superextensions of finite cyclic semigroups that have (left) zeros.

Theorem 2. The superextension \(\lambda(C_{r,m}) \) of a cyclic semigroup \(C_{r,m} \) has a (left) zero if and only if \(m \in \{1,3,5\} \).

Now we shall characterize cyclic semigroups whose superextensions have one-point minimal left ideals.

If \(C_{r,m} \) is a finite cyclic semigroup of odd period \(m \) and \(C_n \) is the maximal subgroup of \(C_{r,m} \), then the superextension \(\lambda(C_{r,m}) \) contains a right zero, in particular the maximal linked system

\[
\mathcal{L} = \{A \subset C_m : |A| > m/2\}
\]

is a right zero of the semigroup \(\lambda(C_{r,m}) \). A maximal linked system \(Z \in \lambda(C_{r,m}) \) is a right zero of the semigroup \(\lambda(C_{r,m}) \) if and only if the one-point set \(\{Z\} \) is a minimal left ideal of \(\lambda(C_{r,m}) \). Taking into account that all minimal left ideals are isomorphic and the union \(K(\lambda(C_{r,m})) \) of all minimal left ideals in \(\lambda(C_{r,m}) \) coincides with the minimal ideal of \(\lambda(C_{r,m}) \) (see [11, Theorem 2.8]), Theorem 1 and Proposition 1.3 imply the following theorem.

Theorem 3. A finite cyclic semigroup \(C_{r,m} \) has odd period \(m \) if and only if all minimal left ideals of the semigroup \(\lambda(C_{r,m}) \) are singletons. In this case the minimal ideal \(K(\lambda(C_{r,m})) \) of the semigroup \(\lambda(C_{r,m}) \) is the subsemigroup of right zeros of \(\lambda(C_{r,m}) \). The infinite cyclic semigroup has no one-point minimal left (right) ideals.

2 Commutativity of superextensions of cyclic semigroups

Theorem 4. A finite cyclic semigroup \(C_{r,m} = \{a, a^2, \ldots, a^r, \ldots, a^{m+r-1} | a^{r+m} = a^r \} \) of order \(m + r - 1 \) has commutative superextension if and only if

\[
(r, m) \in \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)\}.
\]

The superextension of the infinite cyclic semigroup is not commutative.
Proof. It was proved in the paper [1] that the superextension of a group G is commutative if and only if $|G| \leq 4$. Since for $m > 4$ the superextension $\lambda(C_{r,m})$ contains a noncommutative subsemigroup $\lambda(C_m)$, $\lambda(C_{r,m})$ is not commutative. So it is sufficient to consider only cyclic semigroups of period $m \leq 4$.

If index $r = 1$, then $C_{r,m}$ is a cyclic group of order m, and thus for $r = 1$ the semigroup $\lambda(C_{r,m})$ is commutative if and only if $m \leq 4$.

If $|C_{r,m}| \in \{1, 2\}$, then the superextension $\lambda(C_{r,m})$ is isomorphic to the semigroup $C_{r,m}$, and $\lambda(C_{r,m})$ is commutative. In the case $|C_{r,m}| = 3$ the superextension $\lambda(C_{r,m})$ contains only one maximal linked system, which is not a principal ultrafilter. Since all principal ultrafilters commute with maximal linked systems, the superextension $\lambda(C_{r,m})$ is commutative.

It follows that for

$$(r, m) \in \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1)\}$$

the superextension $\lambda(C_{r,m})$ is commutative.

If $r = 2$, $m \in \{3, 4\}$, then the product xy of any two elements $x, y \in C_{r,m}$ is contained in the maximal subgroup C_m, and thus $xy = \varphi(xy) = \varphi(x)\varphi(y)$, where $\varphi : C_{r,m} \to C_m$ is the retraction $\varphi : s \to es$. Since superextensions of groups of order 3 and 4 are commutative,

$$(A \circ B = \lambda\varphi(A) \circ \lambda\varphi(B) = \lambda\varphi(B) \circ \lambda\varphi(A) = B \circ A)$$

for any $A, B \in \lambda(C_{r,m})$. Consequently, the semigroups $\lambda(C_{2,3})$ and $\lambda(C_{2,4})$ are commutative.

Let $r = 3$. The case $m = 1$ was considered before.

For the semigroup $C_{3,2} = \{a, a^2, a^3, a^4 | a^5 = a^3\}$ the semigroup $\lambda(C_{3,2})$ contains 12 elements:

$${\mathcal{U}}_k = \langle \{a^k\} \rangle, \quad \Delta_k = \langle A \subset C_{3,2} : |A| = 2, \ a^k \notin A \rangle$$

and

$$\square_k = \langle C_{3,2} \setminus \{a^k\}, A : A \subset C_{3,2}, |A| = 2, \ a^k \in A \rangle, \text{ where } k \in \{1, 2, 3, 4\}.$$

The following table implies the commutativity of $\lambda(C_{3,2})$:

<table>
<thead>
<tr>
<th>\circ</th>
<th>Δ_1</th>
<th>Δ_2</th>
<th>Δ_3</th>
<th>Δ_4</th>
<th>\square_1</th>
<th>\square_2</th>
<th>\square_3</th>
<th>\square_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ_1</td>
<td>$U_1 \cup U_2 \cup U_3$</td>
</tr>
<tr>
<td>Δ_2</td>
<td>$U_1 \cup U_2 \cup U_3$</td>
</tr>
<tr>
<td>Δ_3</td>
<td>$U_1 \cup U_2 \cup U_3$</td>
</tr>
<tr>
<td>Δ_4</td>
<td>$U_1 \cup U_2 \cup U_3$</td>
</tr>
<tr>
<td>\square_1</td>
<td>$U_1 \cup U_2$</td>
</tr>
<tr>
<td>\square_2</td>
<td>$U_1 \cup U_2$</td>
</tr>
<tr>
<td>\square_3</td>
<td>$U_1 \cup U_2$</td>
</tr>
<tr>
<td>\square_4</td>
<td>$U_1 \cup U_2$</td>
</tr>
</tbody>
</table>

If $m \in \{3, 4\}$, then $C_{3,m} = \{a, a^2, \ldots, a^{m+2} | a^{m+3} = a^3\}$. Consider maximal linked systems $A = \langle \{a, a^2\}, \{a, a^3\}, \{a^2, a^3\} \rangle$ and $B = \langle \{a, a^2\}, \{a, a^{m+1}\}, \{a^2, a^{m+1}\} \rangle$. Observe that $\{a^2, a^3\} = a\{a, a^2\} \cup a^2\{a, a^{m+1}\} \in A \circ B$, but $\{a^2, a^3\} \notin B \circ A$. Therefore, $A \circ B \neq B \circ A$ and the semigroup $C_{3,m}$ is not commutative.

Let $r \geq 4$. First consider the case of the semigroup $C_{4,1} = \{a, a^2, a^3, a^4 | a^5 = a^4\}$. Each maximal linked system different from the principal ultrafilter $\langle \{a\} \rangle$ contains the set $\{a^2, a^3, a^4\}$.

Since \(\{a^2, a^3, a^4\} \) is an ideal in \(C \), the product of such maximal linked systems is the principal ultrafilter \(\{a^4\} \). The fact that the principal ultrafilter \(\{a\} \) commutes with all maximal linked systems implies the commutativity of the semigroup \(\lambda(C_{4,1}) \).

Put \(A = \{a, a^2\}, \{a, a^3\}, \{a^2, a^3\}, B = \{a, a^2\}, \{a, a^m\}, \{a^2, a^m\} \). We have that \(a^2, a^3 = a\{a^2, a^3\} \cup a^2\{a, a^2\} \in B \circ A \), and \(\{a^2, a^3\} \notin A \circ B \), since the equality \(a^{m+r+1} = a^4 \) holds only if \(r = 4 \) and \(m = 1 \), which we considered before. Consequently, \(A \circ B \neq B \circ A \) and a semigroup \(\lambda(C_{r,m}) \) for \((r, m) \neq (4, 1) \) is not commutative.

Let \(\{a\} = \{a, \ldots, a^n, \ldots\} \) be the infinite cyclic semigroup. Put \(A = \{a, a^2\}, \{a, a^3\}, \{a^2, a^3\}, B = \{a, a^2\}, \{a, a^3\}, \{a^2, a^3\} \). Let us observe that \(\{a^2, a^3\} = a\{a^2, a^3\} \cup a^2\{a, a^2\} \in B \circ A \), but \(\{a^2, a^3\} \notin A \circ B \). Therefore, \(A \circ B \neq B \circ A \) and the semigroup \(\lambda(\{a\}) \) is not commutative.

3 Right (left) cancelable elements

In this section we shall detect right (left) cancelable elements of superextensions of cyclic semigroups.

Proposition 3.1. The superextension \(\lambda(C_{r,m}) \) has (left, right) cancelable elements if and only if index \(r \) of a cyclic semigroup \(C_{r,m} \) is equal to 1.

Proof. Let \(r > 1 \) and \(a \) be the generator of a semigroup \(C_{r,m} \). Consider the map \(\varphi : C_{r,m} \to C_m \), \(\varphi : x \to ex \), where \(e \) is the neutral element of the cyclic group \(C_m \). According to Lemma 1.3 this map is a retraction. Since \(a^{r-1}x \in C_{r,m} = \{a^{r-1}, \ldots, a^{r+m-1}\} \) for any \(x \in C_{r,m} \), \(a^{r-1}x = \varphi(a^{r-1}x) = \varphi(a^{r-1})\varphi(x) \). On the other hand, since \(C_m \) is an ideal of \(C_{r,m} \), \(\varphi(a^{r-1})x \in C_m \) and \(\varphi(a^{r-1})x = \varphi(\varphi(a^{r-1})x) = \varphi(\varphi(a^{r-1}))\varphi(x) = \varphi(a^{r-1})\varphi(x) \). Consequently, \(\varphi(a^{r-1})x = a^{r-1}x \) for any \(x \in C_{r,m} \).

Let \(M \) be a maximal linked system on a semigroup \(C_{r,m} \). Then we obtain \(\{a^{r-1}\} \circ M = \{ \bigcup_{a \in \{a^{r-1}\}} a \circ M : \{M_a\}_{a \in L} \subset M \} = \{a^{r-1}M : M \in M \} = \{\varphi(a^{r-1})M : M \in M \} = \{\{\varphi(a^{r-1})\} \circ M \) and \(M \circ \{a^{r-1}\} = \{\bigcup_{a \in M} a \circ \{a^{r-1}\} : M \in M \} = \{M \varphi(a^{r-1}) : M \in M \} = \{M \circ \{a^{r-1}\} \} \). Since \(a^{r-1} \neq \varphi(a^{r-1}) \), the maximal linked system \(M \) is neither left nor right cancelable.

If \(r = 1 \), then a cyclic semigroup \(C_{1,m} = C_m \) is a group. Let \(e \) be the neutral element of the group \(C_m \). Then \(\{e\} \circ M = M = \{e\} \) for any \(M \in \lambda(C_m) \), and equalities \(X \circ \{e\} = M = \{e\} \circ Y \) imply that \(X = Y \). Consequently, the principal ultrafilter \(\{e\} \) is a cancelable element of the semigroup \(\lambda(C_{1,m}) \).

If \(G \) is a group, then the formula

\[
\mathcal{L} \circ M = \bigcup_{a \in L} a \circ M_a : L \in \mathcal{L}, \{M_a\}_{a \in L} \subset M
\]

implies that the product \(\mathcal{L} \circ M \) of any two maximal linked systems \(\mathcal{L} \) and \(M \) is a principal ultrafilter if and only if both \(\mathcal{L} \) and \(M \) are principal ultrafilters. Therefore, we deduce the following proposition.

Proposition 3.2. For a group \(G \) the set \(\lambda(G) \) \(\{ \{g\} : g \in G \} \) is an ideal in \(\lambda(G) \).

Lemma 3.1. A semigroup \(S \) is a left (right) cancellative semigroup if and only if all principal ultrafilters are left (right) cancelable elements in the superextension \(\lambda(S) \).
Proof. If an element \(a \in S \) is not left (right) cancelable in the semigroup \(S \), then it is clear that the principal ultrafilter generated by the element \(a \) is not cancelable in \(\lambda(S) \).

Let \(S \) be a left (right) cancellative semigroup, \(a \in S \) and \(\mathcal{X}, \mathcal{Y} \subseteq \lambda(S) \), \(\mathcal{X} \neq \mathcal{Y} \), then \(\mathcal{X} \cap \mathcal{Y} = \emptyset \) for some \(X \in \mathcal{X}, Y \in \mathcal{Y} \). Since each element of \(S \) is left (right) cancelable, then \(aX \cap aY = \emptyset \) \((Xa \cap Ya = \emptyset) \), and thus \(\langle \{a\} \rangle \circ \mathcal{X} \neq \langle \{a\} \rangle \circ \mathcal{Y} \) \((\mathcal{X} \circ \langle \{a\} \rangle \neq \mathcal{Y} \circ \langle \{a\} \rangle) \). Consequently, the left \(l\langle \{a\} \rangle \) (right \(r\langle \{a\} \rangle \)) shift is injective and the principal ultrafilter \(\langle \{a\} \rangle \) is left (right) cancelable.

Proposition 3.3. An element \(M \in \lambda(C_{1,m}) \) is left (right) cancelable if and only if \(M \) is a principal ultrafilter.

Proof. Since in any group, in particular in the cyclic group \(C_{1,m} \), all elements are cancelable, according to Lemma 3.1 all principal ultrafilters are right cancelable in the superextension \(\lambda(C_{1,m}) \).

Assume that some maximal linked system \(M \in \lambda(C_{1,m}) \setminus \{\langle g \rangle \} \) \(g \in C_{1,m} \) is left cancelable. This means that the left shift \(l_M : \lambda(C_{1,m}) \to \lambda(C_{1,m}) \), \(l_M : A \to M \ast A \), is injective. According to Theorem 3.2, the set \(\lambda(C_{1,m}) \setminus \{\langle g \rangle \} \) \(g \in C_{1,m} \) is an ideal in \(\lambda(C_{1,m}) \). Consequently, \(l_M(\lambda(C_{1,m})) = M \circ \lambda(C_{1,m}) \) \(\subseteq \lambda(C_{1,m}) \setminus \{\langle g \rangle \} \) \(g \in C_{1,m} \). Since \(\lambda(C_{1,m}) \) is finite, \(l_M \) cannot be injective.

For the right cancelable elements the proof is analogous.

Since the infinite cyclic semigroup is a cancellative semigroup, then Lemma 3.1 implies the following proposition.

Proposition 3.4. All principal ultrafilters are cancelable elements in the superextension of the infinite cyclic semigroup.

Proposition 3.5. Let \(S \) be the infinite cyclic semigroup and \(\mathcal{L} \subseteq \lambda(S) \). A maximal linked system \(\mathcal{L} \) is right cancelable in \(\lambda(S) \) provided for every \(s \in S \) there is a set \(L_s \subseteq \mathcal{L} \) such that the family \(\{s \ast L_s : s \in S\} \) is disjoint.

Proof. Assume that \(\{L_s\}_{s \in S} \subset \mathcal{L} \) is a family such that \(\{s \ast L_s : s \in S\} \) is disjoint. To prove that \(\mathcal{L} \) is right cancelable, take two maximal linked systems \(\mathcal{A}, \mathcal{B} \subseteq \lambda(S) \) with \(\mathcal{A} \circ \mathcal{L} = \mathcal{B} \circ \mathcal{L} \). It is sufficient to show that \(\mathcal{A} \subseteq \mathcal{B} \). Take any set \(A \in \mathcal{A} \) and observe that the set \(\bigcup_{a \in A} a \ast L_a \) belongs to \(\mathcal{A} \circ \mathcal{L} = \mathcal{B} \circ \mathcal{L} \). Consequently, there is a set \(B \subseteq \mathcal{B} \) and a family of sets \(\{M_b\}_{b \in B} \subseteq \mathcal{L} \) such that

\[
\bigcup_{b \in B} b \ast M_b \subset \bigcup_{a \in A} a \ast L_a.
\]

It follows from \(L_b \in \mathcal{L} \) that \(M_b \cap L_b \) is not empty for every \(b \in B \).

Since the sets \(a \ast L_a \) \(b \ast L_b \) are disjoint for different \(a, b \in S \), the inclusion

\[
\bigcup_{b \in B} b \ast (M_b \cap L_b) \subset \bigcup_{b \in B} b \ast M_b \subset \bigcup_{a \in A} a \ast L_a
\]

implies \(B \subseteq \mathcal{A} \) and hence \(\mathcal{A} \subseteq \mathcal{B} \).
REFERENCES

Received 5.12.2012

У статті вивчаються праві і ліві нули, одноточкові ліві ідеали, мінімальний ідеал, скоротні зліва і скоротні справа елементи суперрозширення λ(S) циклічної напівгрупи S, а також характеризуються циклічні напівгрупи, суперрозширення яких є комутативними.

Ключові слова і фрази: циклічна напівгрупа, максимальна зцеплена система, суперрозширення.

В работе изучаются правые и левые нули, одноточечные левые идеалы, минимальный идеал, сократимые слева и сократимые справа элементы суперрасширения λ(S) циклической полугруппы S, а также характеризуются циклические полугруппы, суперрасширения которых коммутативны.

Ключевые слова и фразы: циклическая полугруппа, максимальная сцепленная система, суперрасширение.