THE COMPLETENESS OF A NORMED SPACE IS EQUIVALENT TO THE
HOMOGENEITY OF ITS SPACE OF CLOSED BOUNDED CONVEX SETS

We prove that an infinite-dimensional normed space X is complete if and only if the space $B_{\text{Conv}}^H(X)$ of all non-empty bounded closed convex subsets of X is topologically homogeneous.

Key words and phrases: completeness, normed spaces, topological homogeneity, closed convex sets.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: ihromant@gmail.com

INTRODUCTION

In this paper we shall prove that the completeness of an infinite-dimensional normed space X is equivalent to the topological homogeneity of its hyperspace $B_{\text{Conv}}^H(X)$ of all non-empty bounded closed convex sets. The space $B_{\text{Conv}}^H(X)$ is endowed with the Hausdorff metric

$$d_H(A, B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} \|a - b\|, \sup_{b \in B} \inf_{a \in A} \|a - b\| \right\}, \quad A, B \in B_{\text{Conv}}^H(X).$$

Due to results of [5], [6], [2], the topological structure of the hyperspace $B_{\text{Conv}}^H(X)$ is well-understood for each Banach space X. To formulate a classification result for the hyperspace $B_{\text{Conv}}^H(X)$ we need to recall some notations.

All linear spaces considered in this paper are over the field of real numbers \mathbb{R}. For a linear topological space X its dimension $\dim(X)$ is defined as the smallest cardinality $|B|$ of a subset $B \subset X$ having dense linear hull in X. For a cardinal κ by $l_2(\kappa) = \{ x \in \mathbb{R}^\kappa : \sum_{\alpha \in \kappa} |x(\alpha)|^2 < \infty \}$ we denote the Hilbert space having an orthonormal base of cardinality κ. By ω we denote the smallest infinite cardinal. By \mathbb{R}_+ and \mathbb{I} we denote the closed half-line $[0, \infty)$ and the closed unit interval $[0, 1]$, respectively.

The following classification theorem can be derived from [5], [6], [2].

Theorem 1. For each Banach space X the hyperspace $B_{\text{Conv}}^H(X)$ is homeomorphic to:

1) \{0\} iff $\dim(X) = 0$;
2) $\mathbb{R}_+ \times \mathbb{R}$ iff $\dim(X) = 1$;
3) $\mathbb{I}^\omega \times \mathbb{R}_+$ iff $1 < \dim(X) < \omega$;
4) $l_2(2^{\dim(X)})$ iff $\dim(X) \geq \omega$.

© Hetman I., 2013
In this paper we shall study the hyperspace \(\mathrm{BConv}_H(X) \) for non-complete normed spaces \(X \). In this case we shall show that \(\mathrm{BConv}_H(X) \) has rather bad topological properties. In particular, it is neither topologically homogeneous nor even weakly homogeneous.

1 Main Result

A topological space \(X \) is defined to be

- **topologically homogeneous** if for any two points \(x, y \in X \) there is a homeomorphism \(h : X \to X \) such that \(h(x) = y \);

- **weakly homogeneous** if for each non-empty open dense subset \(U \subset X \) and each point \(x \in X \) there is a homeomorphism \(h : X \to X \) such that \(h(x) \in U \).

It is clear that each topologically homogeneous space is weakly homogeneous.

The main result of this note is the following theorem.

Theorem 2. For an infinite-dimensional normed space \(X \) the following conditions are equivalent:

1. \(X \) is complete;
2. \(\mathrm{BConv}_H(X) \) is topologically homogeneous;
3. \(\mathrm{BConv}_H(X) \) is weakly homogeneous;
4. \(\mathrm{BConv}_H(X) \) is homeomorphic to \(l_2(2^{\dim(X)}) \).

Proof. We shall prove the following implications. (1) \(\Rightarrow \) (4) \(\Rightarrow \) (2) \(\Rightarrow \) (3) \(\Rightarrow \) (1). The implication (1) \(\Rightarrow \) (4) follows from Theorem 1 while (4) \(\Rightarrow \) (2) \(\Rightarrow \) (3) are trivial. So, it remains to prove (3) \(\Rightarrow \) (1).

In the space \(\mathrm{BConv}_H(X) \) consider the open dense subspace

\[
\mathrm{BCb}_H(X) = \{ A \in \mathrm{BConv}_H(X) : \text{Int}(A) \neq \emptyset \}
\]

consisting of bounded convex bodies (i.e., bounded convex sets with non-empty interior). Let \(\bar{X} \) be the completion of the normed space \(X \) and \(\mathrm{BCb}_H(\bar{X}) \) be the space of bounded convex bodies in the Banach space \(\bar{X} \). Observe that the map

\[
\text{cl} : \mathrm{BCb}_H(X) \to \mathrm{BCb}_H(\bar{X}),
B \mapsto \bar{B},
\]

is an isometric bijection. The space \(\mathrm{BCb}_H(\bar{X}) \), being open in the complete metric space \(\mathrm{BConv}_H(\bar{X}) \), is \(\varepsilon \)-Cech-complete and so is its isometric copy \(\mathrm{BCb}_H(X) \). Assuming that the space \(\mathrm{BConv}_H(X) \) is weakly homogeneous, and taking into account that \(\mathrm{BCb}_H(X) \) is an open dense \(\varepsilon \)-Cech-complete subspace of \(\mathrm{BConv}_H(X) \), we conclude that each point of the space \(\mathrm{BConv}_H(X) \) has an open \(\varepsilon \)-Cech-complete neighborhood. By a result of Arhangel'ski [1] and Frolik [4] (see also [3, 5.5.8(c)]), the space \(\mathrm{BConv}_H(X) \), being locally \(\varepsilon \)-Cech-complete and paracompact, is \(\varepsilon \)-Cech-complete, and so is its closed subspace \(X \). Being \(\varepsilon \)-Cech-complete, the space \(X \) is a \(G_{32} \)-set in its completion \(\bar{X} \). Assuming that \(X \neq \bar{X} \), we can find a point \(x \in \bar{X} \setminus X \) and conclude that \(X \) and \(X + x \) are two disjoint dense \(G_{32} \)-subsets of Banach space \(\bar{X} \), which is impossible according to the Baire Theorem. Consequently, \(X = \bar{X} \) is a Banach space. \(\square \)
2 ACKNOWLEDGEMENT

The author would like to express his thanks to Ostap Chervak and Taras Banakh for fruitful ideas and interesting discussion about this paper.

REFERENCES

Received 26.12.2012