KHATS’ R.V.

ASYMPTOTIC BEHAVIOR OF AVERAGING OF ENTIRE FUNCTIONS OF IMPROVED REGULAR GROWTH

Using the Fourier series method for entire functions, we investigate the asymptotic behavior of averaging of entire functions of improved regular growth.

Key words and phrases: entire function of completely regular growth, entire function of improved regular growth, Fourier series method.

Ivan Franko State Pedagogical University, 24 Franka str., 82100, Drohobych, Ukraine
E-mail: khats@ukr.net

It is well known that an entire function \(f \) of order \(\rho \in (0, +\infty) \) with the indicator \(h \) is of completely regular growth in the Levin-Pflüger sense [5, p. 183] if the relation

\[
\log |f(z)| = |z|^\rho h(\varphi) + o(|z|^\rho), \quad z \to \infty, \quad \varphi = \arg z \in [0, 2\pi),
\]

holds outside an exceptional set \(C_0 \subset C \) of disks of zero linear density. In the theory of entire functions of completely regular growth (see [5, pp. 182–217], [1], [2]) the following theorem is valid.

Theorem A. ([5, p. 194]) If an entire function \(f \) of order \(\rho \in (0, +\infty) \) with the indicator \(h \) is of completely regular growth, then

\[
I_f(\varphi) := \int_1^r \int_1^t \frac{\log |f(ue^{i\varphi})|}{u} du = \frac{r^\rho}{\rho^2} h(\varphi) + o(r^\rho), \quad r \to +\infty,
\]

holds uniformly in \(\varphi \in [0, 2\pi] \).

Similar results for entire functions of \(\rho \)-regular growth were obtained by A. Grishin [3] and for meromorphic functions of completely regular growth of finite \(\lambda \)-type [10, p. 75] by A. Kondratyuk [10, p. 112] and Ya. Vasyll’kiv [12] (see also Yu. Lapenko [11]).

In [13, 6], the notion of an entire function of improved regular growth was introduced, and criteria for this regularity were established in terms of the distribution of zeros that are located on a finite number of rays. In [4] this notion was generalized to subharmonic functions. A criterion for the improved regular growth of entire functions of positive order with zeros on a finite system of rays in terms of their Fourier coefficients was established in [7].

An entire function \(f \) is called a function of improved regular growth (see [13, 6, 7]) if for some \(\rho \in (0, +\infty) \) and \(\rho_1 \in (0, \rho) \), and a \(2\pi \)-periodic \(\rho \)-trigonometrically convex function

\[
\text{UDK 517.5}
2010 Mathematics Subject Classification: 30D15.

© Khats’ R.V., 2013
Then for some \(\rho \) there exists a set \(U \subset \mathbb{C} \) contained in the union of disks with finite sum of radii and such that
\[
\log |f(z)| = |z|^\rho h(\phi) + O(|z|^\rho_1), \quad U \ni \rho z = re^{i\phi} \to \infty.
\]

If \(f \) is an entire function of improved regular growth, then it has [13] the order \(\rho \) and indicator \(h \).

In the present paper, using the Fourier series method [10] for the logarithm of the modulus of an entire function we obtain an analog of Theorem A for the class of entire functions of improved regular growth. Our principal result is the following theorem (see also [9]), which improves the results of papers [8, 14].

Theorem 1. If an entire function \(f \) of order \(\rho \in (0, +\infty) \) is of improved regular growth, then for some \(\rho_2 \in (0, \rho) \)
\[
I_f^r(\phi) = \frac{\rho^2}{\rho^2} h(\phi) + O(r^{\rho_2}), \quad r \to +\infty,
\]
holds uniformly in \(\phi \in [0, 2\pi] \).

To prove Theorem 1, we need some preliminaries. Let \(f \) be an entire function with \(f(0) = 1 \), let \((\lambda_n)_{n \in \mathbb{N}} \) be the sequence of its zeros, let \(Q_k \) be the coefficient of \(z^k \) in the exponential factor in the Hadamard-Borel representation [5, p. 38] of an entire function \(f \) of order \(\rho \in (0, +\infty) \), and let
\[
c_k(r, \log |f|) := \frac{1}{2\pi} \int_0^{2\pi} e^{-ik\phi} \log |f(re^{i\phi})| \, d\phi, \quad k \in \mathbb{Z},
\]
\[
c_k(r, I_f^r) := \frac{1}{2\pi} \int_0^{2\pi} e^{-ik\phi} I_f^r(\phi) \, d\phi, \quad k \in \mathbb{Z}, \quad r > 0.
\]

Put ([10, p. 104], [12])
\[
n_k(r, f) := \sum_{|\lambda_n| \leq r} e^{-ik \arg \lambda_n}, \quad N_k(r, f) := \int_0^r \frac{n_k(t, f)}{t} \, dt, \quad k \in \mathbb{Z}.
\]

Then (see [10, p. 107], [12])
\[
c_k(r, I_f^r) = \int_0^r \frac{dt}{t} \int_0^t \frac{c_k(u, \log |f|)}{u} \, du, \quad k \in \mathbb{Z},
\]
and
\[
N_k(r, f) = c_k(r, \log |f|) - k^2 c_k(r, I_f^r), \quad k \in \mathbb{Z}, \quad r > 0.
\]

Lemma 1. ([7]) Let \(f \) be an entire function of improved regular growth of order \(\rho \in (0, +\infty) \).

Then for some \(\rho_3 \in (0, \rho) \) and each \(k \in \mathbb{Z} \)
\[
c_k(r, \log |f|) = c_k r^\rho + O(r^{\rho_3}), \quad r \to +\infty,
\]
\[
N_k(r, f) = c_k (1 - k^2 / \rho^2) r^\rho + O(r^{\rho_3}), \quad r \to +\infty,
\]
where
\[
c_k := \frac{1}{2\pi} \int_0^{2\pi} e^{-ik\phi} h(\phi) \, d\phi.
\]
By M_1, M_2, \ldots we denote some positive constants.

Lemma 2. If an entire function f of order $\rho \in (0, +\infty)$ is of improved regular growth, then

$$|c_k(r, I_f)| \leq \frac{M_1}{k^2} r^\rho + \frac{M_2}{k^2} r^{\rho_3}, \quad k \in \mathbb{Z} \setminus \{0\},$$

for some $\rho_3 \in (0, \rho)$ and all $r > 0$.

Proof. Let ρ be noninteger and $p = \lceil \rho \rceil$. Then (see [10, pp. 10, 120, 124], [12])

$$c_k(r, \log |f|) = -c_k(r, \log |f|), \quad k \leq -1, \quad c_0(r, \log |f|) = N_0(r, f),$$

$$c_k(r, \log |f|) = \frac{1}{2} Q_k r^k + \frac{k}{2} \int_0^r \left(\frac{r}{t} \right)^k - \left(\frac{t}{r} \right)^k \frac{N_k(t, f)}{t} \, dt + N_k(r, f), \quad 1 \leq k \leq p,$$

and

$$c_k(r, \log |f|) = -\frac{k}{2} \left(r^k \int_0^r t^{k-1} N_k(t, f) \, dt + r^k \int_r^{+\infty} t^{-k-1} N_k(t, f) \, dt \right) + N_k(r, f),$$

for $k \geq p + 1$. Since $|N_k(r, f)| \leq N_0(r, f)$ for each $k \in \mathbb{Z}$, then using (3) and (6), we obtain

$$|c_k(r, \log |f|)| \leq \frac{1}{2} Q_k r^k + \frac{k}{2} \int_0^r \left(\frac{r}{t} \right)^k - \left(\frac{t}{r} \right)^k \frac{N_0(t, f)}{t} \, dt + N_0(r, f)$$

$$\leq \frac{1}{2} Q_k r^k + \frac{k}{2} \int_0^r \left(\frac{r}{t} \right)^k - \left(\frac{t}{r} \right)^k \left(c_0 t^{\rho - 1} + O(t^{\rho_3 - 1}) \right) \, dt + c_0 r^{\rho - 1} + O(r^{\rho_3 - 1})$$

$$= \frac{c_0 r^\rho}{\rho^2 - k^2} + O(r^{\rho_3}), \quad 1 \leq k \leq p < \rho_3,$$

as $r \to +\infty$. Similarly, using formulas (3) and (7), we get

$$|c_k(r, \log |f|)| \leq \frac{2k^2 - \rho^2}{k^2 - \rho^2} c_0 r^\rho + \frac{2k^2 - \rho_3^2}{k^2 - \rho_3^2} O(r^{\rho_3}), \quad k \geq p + 1 > \rho,$$

as $r \to +\infty$. Therefore, from (2), (3) and (8) it follows

$$|c_k(r, I_f)| \leq \frac{|c_k(r, \log |f|)| + N_0(r, f)}{k^2} \leq \frac{2\rho^2 - k^2}{k^2(\rho^2 - k^2)} c_0 r^\rho + \frac{\rho_3^2 - k^2 + 1}{k^2(\rho_3^2 - k^2)} O(r^{\rho_3})$$

$$\leq \frac{M_3}{k^2} r^\rho + \frac{M_4}{k^2} r^{\rho_3}, \quad r > 0, \quad 1 \leq k \leq p < \rho_3.$$

Similarly, from (2), (3) and (9), we get

$$|c_k(r, I_f)| \leq \frac{3k^2 - 2\rho^2}{k^2(k^2 - \rho^2)} c_0 r^\rho + \frac{3k^2 - 2\rho_3^2}{k^2(k^2 - \rho_3^2)} O(r^{\rho_3})$$

$$\leq \frac{M_5}{k^2} r^\rho + \frac{M_6}{k^2} r^{\rho_3}, \quad r > 0, \quad k \geq p + 1 > \rho.$$

Thus, relations (1), (5), (10) and (11) imply (4). The case $\rho \in \mathbb{N}$ is considered analogously. Lemma 2 is proved. \qed
Proof of Theorem 1. Using (1) and (2), we have
\[
 c_k(r, I_f^f) = \frac{c_k(r, \log |f|) - N_k(r, f)}{k^2}, \quad k \in \mathbb{Z} \setminus \{0\},
\]
and
\[
 c_0(r, I_f^f) = \int_0^r \int_0^t \frac{c_0(u, \log |f|)}{u} du.
\]
Moreover, according to Lemma 1, we get
\[
 c_0(r, I_f^f) = c_0 \frac{r^\rho}{\rho^2} + O(r^\rho_3),
\]
\[
 c_k(r, I_f^f) = c_k \frac{r^\rho}{\rho^2} + \frac{O(r^{\rho_3})}{k^2}, \quad k \in \mathbb{Z} \setminus \{0\},
\]
as \(r \to +\infty\) for some \(\rho_3 \in (0, \rho)\). Therefore, taking into account Lemma 2, we obtain
\[
 I_f^f(\varphi) := \sum_{k \in \mathbb{Z}} c_k(r, I_f^f) e^{ik\varphi} = \sum_{k \in \mathbb{Z} \setminus \{0\}} c_k(r, I_f^f) e^{ik\varphi} + c_0(r, I_f^f)
\]
\[
 = \frac{r^\rho}{\rho^2} \sum_{k \in \mathbb{Z}} c_k e^{ik\varphi} + O(r^{\rho_3}) = \frac{r^\rho}{\rho^2} h(\varphi) + O(r^{\rho_3}),
\]
as \(r \to +\infty\) uniformly in \(\varphi \in [0, 2\pi]\). \qed

REFERENCES

Asymptotic behavior of averaging of entire functions of improved regular growth

