Khoroshchak V.S., Khrystiyanyn A.Ya., Lukivska D.V.

A CLASS OF JULIA EXCEPTIONAL FUNCTIONS

The class of \(p \)-loxodromic functions (meromorphic functions, satisfying the condition \(f(qz) = pf(z) \) for some \(q \in \mathbb{C}\setminus\{0\} \) and all \(z \in \mathbb{C}\setminus\{0\} \)) is studied. Each \(p \)-loxodromic function is Julia exceptional. The representation of these functions as well as their zero and pole distribution are investigated.

Key words and phrases: \(p \)-loxodromic function, the Schottky-Klein prime function, Julia exceptionality.

Ivan Franko National University, 1 Universytetska str., 79 000, Lviv, Ukraine
E-mail: v.khoroshchak@gmail.com (Khoroshchak V.S.), khrystiyanyn@ukr.net (Khrystiyanyn A.Ya.), d.lukivska@gmail.com (Lukivska D.V.)

INTRODUCTION

Denote \(\mathbb{C}^* = \mathbb{C}\setminus\{0\} \), and let \(q, p \in \mathbb{C}^*, |q| < 1 \).

Definition 1. A meromorphic in \(\mathbb{C}^* \) function \(f \) is said to be \(p \)-loxodromic of multiplicator \(q \) if for every \(z \in \mathbb{C}^* \)

\[
f(qz) = pf(z).
\]

Let \(L_{qp} \) denotes the class of \(p \)-loxodromic functions of multiplicator \(q \).

The case \(p = 1 \) has been studied earlier in the works of O. Rausenberger [9], G. Valiron [11] and Y. Hellegouarch [5]. In his work [3, p. 133] which A. Ostrowski [8] called "besonders schöne und überraschende" G. Julia gave an example of a meromorphic in the punctured plane \(\mathbb{C}^* \) function satisfying (1) with \(p = 1 \) for some non-zero \(q, |q| \neq 1 \), and all \(z \in \mathbb{C}^* \). He noted that the family \(\{f_n(z)\}, f_n(z) = f(q^n z) \) is normal [7] in \(\mathbb{C}^* \) because \(f_n(z) = f(z) \) for all \(z \in \mathbb{C}^* \).

If \(p = 1 \) the function \(f \) is called loxodromic. Loxodromic functions of multiplicator \(q \) form a field, which is denoted by \(L_q \). The set \(L_{qp} \) forms an Abelian group with respect to addition. It is obvious that a ratio of two functions from \(L_{qp} \) is a loxodromic function, and the derivative of the loxodromic function is \(p \)-loxodromic with \(p = \frac{1}{q} \).

Remark 1. Every \(f \equiv \text{const} \) belongs to \(L_q \), but the unique constant function belonging to \(L_{qp} \) is \(f \equiv 0 \).

If \(f \in L_{qp} \) and \(a \) is a zero of \(f \), then \(aq^n, n \in \mathbb{Z} \), are as well. That is, in the case of non-positive \(q \) the zeros of \(f \) lay on a logarithmic spiral. Let \(a = |a|e^{i\alpha}, q = |q|e^{i\gamma} \). Then the logarithmic spiral in polar coordinates \((r, \varphi)\) takes the form

\[
\log r - \log |a| = k(\varphi - \alpha),
\]
where \(k = \frac{\log |q|}{\gamma} \). The same concerns the poles of \(f \). The image of a logarithmic spiral on the Riemann sphere by the stereographic projection intersects each meridian at the same angle and is called loxodromic curve (\(\lambda \odot \delta \rho \odot \zeta \) - oblique, \(\delta \rho \odot \mu \odot \zeta \) - way). That is why we call (following G. Valiron) the function from \(L_q \) loxodromic.

Remark 2. If \(f \in L_q \) and \(z \) is its a-point, \(a \in \mathbb{C} \cup \{ \infty \} \), then \(q^n z, n \in \mathbb{Z} \), are its a-points too. In the case, \(f \in L_{qp} \), the previous considerations are valid only for the zeros and the poles of \(f \).

It is easy to verify, that \(L_{qp} \) forms the linear spaces over the fields \(\mathbb{C} \) and \(L_q \). Also it is clear that \(L_{qp} \) has the following properties.

Proposition. The linear space \(L_{qp} \) has the following properties.
1. The map \(D : f(z) \mapsto zf'(z) \) maps \(L_{qp} \) to \(L_{qp} \).
2. The map \(D_1 : f(z) \mapsto z\frac{f'(z)}{f(z)} \) maps \(L_{qp} \) to \(L_q \).
3. \(f(z) \in L_{qp} \Rightarrow f\left(\frac{1}{z}\right) \in L_{qp} \).

Let us give nontrivial example of \(p \)-loxodromic function of multiplicator \(q \). Put
\[
h(z) = \prod_{n=1}^{\infty} (1-q^n z), \quad 0 < |q| < 1.
\]

Definition 2. The function
\[
P(z) = (1-z)h(z)h\left(\frac{1}{z}\right) = (1-z)\prod_{n=1}^{\infty} (1-q^n z)(1-\frac{q^n}{z})
\]
is called the Schottky-Klein prime function.

This function is holomorphic in \(\mathbb{C}^* \) with zero sequence \(\{q^n\}, n \in \mathbb{Z} \). It was introduced by Schottky [10] and Klein [6] for the study of conformal mappings of doubly-connected domains, see also [2].

It is easy to obtain the following property of \(P \)
\[
P(qz) = -\frac{1}{z}P(z).
\]

Example 1. Consider the function
\[
f(z) = \frac{P\left(\frac{z}{P}\right)}{P(z)}.
\]

Using (2), it is easy to show that \(f \in L_{qp} \).

1 **The Numbers of Zeros and Poles of \(p \)-L o xodromic Functions in an Annulus**

Let \(A_q(R) = \{z \in \mathbb{C} : |q|R < |z| \leq R\} \), \(R > 0 \) and \(A_q = A_q(1) \).

Theorem 1. Let \(f \in L_{qp} \) and the boundary of \(A_q(R) \) contains neither zeros nor poles of \(f \). Then \(f \) has equal numbers of zeros and poles (counted according to their multiplicities) in every \(A_q(R) \).
Proof. Let $\Gamma_1 = \{ z \in \mathbb{C} : |z| = |qR| \}$ and $\Gamma_2 = \{ z \in \mathbb{C} : |z| = R \}$ denote the circles bounding $A_q(R)$. Let $n(f)$ be the number of poles of f in $A_q(R)$.

By the argument principle, we have

$$ n\left(\frac{1}{f}\right) - n(f) = \frac{1}{2i\pi} \left(\int_{\Gamma_2^+} \frac{f'(z)}{f(z)} dz - \int_{\Gamma_1^+} \frac{f'(\xi)}{f(\xi)} d\xi \right). \quad (3) $$

Setting $\xi = qz$ in the second integral of (3), we obtain

$$ n\left(\frac{1}{f}\right) - n(f) = \frac{1}{2i\pi} \int_{\Gamma_2^+} \left(\frac{f'(z)}{f(z)} - q\frac{f'(qz)}{f(qz)} \right) dz. \quad (4) $$

Since $f \in L_q p$, the relation (1) implies

$$ f'(qz) = \frac{p}{q} f'(z). \quad (5) $$

Putting (1) and (5) in (4), we obtain the conclusion of the theorem. \(\square\)

Remark 3. Every non-constant loxodromic function of multiplicator q has at least two poles (and two zeros) in every annulus $A_q(R)$ [5]. As we see from Example 1, the p-loxodromic function f has the unique pole $z = 1$ in A_q. This is an essential difference between loxodromic and p-loxodromic functions with $p \neq 1$.

2 \ REPRESENTATION OF p-LOXODROMIC FUNCTIONS

The representation of loxodromic functions from L_q was given in [11], [5]. The following theorem gives the representation of a function from L_{qp}.

Let a_1, \ldots, a_m and b_1, \ldots, b_m be the zeros and the poles of $f \in L_{qp}$ in A_q respectively. Denote

$$ \lambda = \frac{a_1 \cdots a_m}{b_1 \cdots b_m}. \quad (6) $$

Theorem 2. The non-identical zero meromorphic in \mathbb{C}^* function f belongs to L_{qp}, $p \neq 1$, if and only if there exists $v \in \mathbb{Z}$ such that $\lambda = \frac{p^v}{q^v}$ and f has the form

$$ f(z) = c z^v \frac{P\left(\frac{z}{a_1}\right) \cdots P\left(\frac{z}{a_m}\right)}{P\left(\frac{z}{b_1}\right) \cdots P\left(\frac{z}{b_m}\right)}, \quad (7) $$

where c is a constant.

Proof. Firstly, denote

$$ M(z) = \frac{P\left(\frac{z}{a_1}\right) \cdots P\left(\frac{z}{a_m}\right)}{P\left(\frac{z}{b_1}\right) \cdots P\left(\frac{z}{b_m}\right)} $$

and consider the function

$$ g(z) = \frac{f(z)}{M(z)}. $$
Since the functions f and M have the same zeros and poles, it follows that their ratio g is holomorphic in \mathbb{C}^* function. Let $g(z) = \sum_{n=-\infty}^{+\infty} c_n z^n$ be the Launart expansion of g in \mathbb{C}^*. Using relation (1) and the equality (2), we obtain
\[\lambda g(qz) = pg(z). \] (8)

According to (8), we obtain
\[\lambda \sum_{n=-\infty}^{+\infty} c_n q^n z^n = p \sum_{n=-\infty}^{+\infty} c_n z^n \]
for any $z \in \mathbb{C}^*$. This implies $\lambda c_n q^n = pc_n$ or $c_n (\lambda q^n - p) = 0$. Then there exists at least one $c_n \neq 0$, $n \in \mathbb{Z}$, such that
\[c_n (\lambda q^n - p) = 0. \] (9)

Hence, the relation (9) implies $q^n = \frac{p}{\lambda}$. We see also that $c_n = 0$ if $n \neq n$, so we have $g(z) = c_n z^n$. Thus, we can conclude
\[f(z) = g(z) M(z) = cz^n M(z), \]
where c is a constant.

Secondly, we have $f(z) = cz^n M(z)$, $n \in \mathbb{Z}$. Show that it belongs to \mathcal{L}_{qp}. Thus, $f(qz) = cq^n z^n M(qz)$. Indeed, using (2), we obtain
\[f(qz) = cq^n z^n \lambda M(z) = pf(z). \]

This completes the proof.

Corollary 1. Assume $f \in \mathcal{L}_{qp}$, if f is holomorphic in \mathbb{C}^*, then $f(z) \equiv 0$ or there exists $k \in \mathbb{Z} \setminus \{0\}$ such that $p = q^k$ and $f(z) = cz^k$, where c is a constant. Conversely, a holomorphic in \mathbb{C}^* function of the form $f(z) = cz^k$, where $k \in \mathbb{Z} \setminus \{0\}$, c is a constant, belongs to \mathcal{L}_{qp}.

3 Zero and pole distribution

Let $\{a_j\}, \{b_j\}, j \in \mathbb{Z}$ be a couple of sequences in \mathbb{C}^*, $p \neq 1$. Put
\[\mu(r) = \log r / \log |q| - 1. \]

Note that $\mu(r) = 0$ if $|q| \leq r < 1$. Denote
\[
\mathcal{M}(\nu)(r) = \frac{1}{|p|^{\mu(r)}} \times \begin{cases}
 r^\nu \frac{\prod_{1<|a_j| \leq r} |a_j|}{\prod_{1<|b_j| \leq r} |b_j|}, & r > 1; \\
 \frac{\prod_{r<|a_j| \leq 1} |a_j|}{\prod_{r<|b_j| \leq 1} |b_j|}, & 0 < r \leq 1.
\end{cases}
\]
Theorem 3. The zero sequence \(\{a_j\} \) and the pole sequence \(\{b_j\} \) of a non-identical zero meromorphic \(p \)-loxodromic function of multiplicator \(q \) satisfy the following conditions:

(i) the number of \(a_j \) and \(b_j \) in every annulus of the form \(\{z : r < |z| < 2r\}, r > 0 \) is bounded by an absolute constant;

(ii) the difference between the numbers of \(a_j \) and \(b_k \) in every annulus \(\{z : r_1 < |z| < r_2\}, 0 < r_1 < r_2 < +\infty \) is bounded by an absolute constant;

(iii) there exists \(C_1 > 0 \) such that

\[
\left| \frac{a_j}{b_k} - 1 \right| > C_1 \quad \text{for every } j, k \in \mathbb{Z};
\]

(iv) the function \(\mathcal{M}_v(r) \), where \(v \in \mathbb{Z} \) such that \(\lambda = \frac{\nu}{q} \), and \(\lambda \) is given by (6), is bounded for \(r > 0 \).

Proof. Let \(f \) be a \(p \)-loxodromic of multiplicator \(q \) function. If \(f \) is holomorphic then by Corollary 1 there exists \(k \in \mathbb{Z} \setminus \{0\} \) such that \(f(z) = cz^k \), and \(c \) is a constant. Hence, \(f \) has no zeros in \(C^* \). So there is nothing to prove.

Let \(f \) be meromorphic. Then by Remark 2 and Theorem 1 it has infinitely many zeros and poles.

(i) First we remark that there exists a unique \(n_0 \in \mathbb{Z}_+ \) such that \(\frac{1}{|q|^{n_0}} \leq 2 < \frac{1}{|q|^{n_0+1}} \). This \(n_0 \) is equal to

\[
\left\lfloor \frac{\log 2}{\log |q|} \right\rfloor.
\]

Since every annulus \(\{z : \frac{r}{|q|^k} < |z| \leq \frac{r}{|q|^{k+1}}\} \), where \(k \in \mathbb{Z} \), contains the same number of zeros of \(f \), say \(m \), and

\[
(r, 2r) = \left(\bigcup_{k=0}^{n_0-1} \left(\frac{r}{|q|^k}, \frac{r}{|q|^{k+1}} \right) \right) \cup \left(\frac{r}{|q|^{n_0}} , 2r \right)
\]

it follows that the annulus \(\{z : r < |z| \leq 2r\} \) contains at least \(n_0 m \) and less than \((n_0 + 1)m \) zeros of \(f \). The same is true about the poles of \(f \).

(ii) Similarly as in (i) we can find unique \(n_1, n_2 \in \mathbb{Z} \) such that

\[
|q|^{n_1+1} < r_1 \leq |q|^{n_1} < |q|^{n_2} < r_2 \leq |q|^{n_2-1}.
\]

Hence

\[
(r_1, r_2) = (r_1, |q|^{n_1}) \cup \left(\bigcup_{k=n_1}^{n_2-1} (|q|^k, |q|^{k+1}) \right) \cup (|q|^{n_2}, r_2).
\]

Every annulus of the form \(\{z : |q|^{k+1} < |z| \leq |q|^k\} \), where \(k \in \mathbb{Z} \), contains equal amount of zeros and poles of \(f \) counted according to their multiplicities (we have denoted this number by \(m \)). Therefore the difference between the numbers of zeros and poles of \(f \) in the annulus \(\{z : r_1 < |z| < r_2\} \) is no greater than \(2m \) because of the choice of \(n_1, n_2 \).

(iii) Let \(a_1, a_2, ..., a_m \) and \(b_1, b_2, ..., b_m \) be the zeros and the poles of \(f \) in \(\{z : |q| < |z| \leq 1\} \) respectively. Then all the zeros of \(f \) have the form \(a_{\mu, k} = a_kq^\mu \), where \(\mu \in \mathbb{Z}, k = 1, 2, ..., m \).
The same is true about the poles of f, namely $\beta_{\nu,k} = b_kq^n$, where $\nu \in \mathbb{Z}$, $k = 1, 2, ..., m$. So, $\frac{a_j}{b_kq^n} = \frac{a_j}{b_kq^n}$, where $l \in \mathbb{Z}$.

It is necessary to show that there exists $C > 0$ such that the inequality

$$\left| \frac{a_j}{b_kq^n} - 1 \right| > C$$

holds for all $j, k \in \{1, 2, ..., m\}$, and $l \in \mathbb{Z}$.

Suppose that for any $\varepsilon > 0$ there exist $j, k \in \{1, 2, ..., m\}$, and $l \in \mathbb{Z}$ such that

$$\left| \frac{a_j}{b_kq^n} - 1 \right| \leq \varepsilon.$$ \hspace{1cm} (10)

Without loss of generality we can assume that $|l| \leq 2$. Indeed, taking into account where a_j, b_k belong to, we have

$$\left| \frac{a_j}{b_kq^n} \right| \leq \frac{1}{|q|} |q|^l \leq |q|, \quad l \geq 2.$$

Similarly,

$$\left| \frac{a_j}{b_kq^n} \right| \geq |q||q|^l \geq \frac{1}{|q|}, \quad l \leq -2.$$

So, for all $j, k \in \{1, 2, ..., m\}$, and $l \geq 2$

$$\left| \frac{a_j}{b_kq^n} - 1 \right| \geq 1 - |q|,$$

and for $l \leq -2$

$$\left| \frac{a_j}{b_kq^n} - 1 \right| \geq \frac{1}{|q|} - 1.$$

Let now $|l| < 2$. Choose

$$\varepsilon = \frac{1}{2} \min\{|a_jq^n - b_k| : j, k \in \{1, 2, ..., m\}, -1 \leq l \leq 1\}.$$

Then (10) implies

$$|a_jq^n - b_k| \leq \varepsilon|b_k| \leq \varepsilon.$$

That is

$$|a_jq^n - b_k| \leq \frac{1}{2} \min\{|a_jq^n - b_k| : j, k \in \{1, 2, ..., m\}, -1 \leq l \leq 1\}$$

which gives a contradiction.

(iv) We remind that f has representation (7). It can be rewritten as follows

$$f(z) = cz^v \prod_{k=1}^{m} \left(\prod_{n=0}^{+\infty} \left(1 - \frac{q^n z}{a_k} \right) \prod_{n=1}^{+\infty} \left(1 - \frac{q^n a_k}{z} \right) \right), \quad z \in \mathbb{C}^*.$$ \hspace{1cm} (11)

Clearly, we can assume $c \neq 0$. Consider the integral means $I(r) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{i\theta})| d\theta$, $r > 0$.
Let $z = re^{i\theta}$. We have for $r > 1$ [4, p. 8]
\[
\frac{1}{2\pi} \int_0^{2\pi} \log \left| 1 - \frac{z}{a_j} \right| \, d\theta = \log^+ \frac{r}{|a_j|},
\]
and, if $|a_j| \leq 1$
\[
\frac{1}{2\pi} \int_0^{2\pi} \log \left| 1 - \frac{a_j}{z} \right| \, d\theta = 0.
\]
The same is true for b_j.

Since for every $k \in \{1, 2, ..., m\}$ we have $|c_kq^{-n}| > 1$ for $n \in \mathbb{N}$, and $|c_kq^n| \leq 1$ for $n \in \mathbb{N} \cup \{0\}$, where c_k is a zero or pole of f, then (11) implies
\[
I(r) = v \log r + \sum_{|a_j| > 1} \log^+ \frac{r}{|a_j|} - \sum_{|b_j| > 1} \log^+ \frac{r}{|b_j|} + \log |c|, \quad r > 1.
\]
Similarly, for $0 < r \leq 1$ we obtain
\[
I(r) = v \log r + \sum_{|a_j| \leq 1} \log^+ \frac{|a_j|}{r} - \sum_{|b_j| \leq 1} \log^+ \frac{|b_j|}{r} + \log |c|.
\]
Hence,
\[
\mathfrak{M}_v(r) = \frac{1}{|p|^{\mu(r)}} \frac{1}{|c|} \exp I(r) = \frac{1}{|c|} \exp \{ I(r) - \mu(r) \log |p| \}, \quad r > 0.
\]
Since $I(r)$ is convex with respect to $\log r$ and consequently continuous, $I(r)$ is bounded on $[|q|, 1]$. It follows from the definition of a p-loxodromic function of multiplicator q that
\[
I(|q|^kr) = I(r) + k \log |p|
\]
for every $k \in \mathbb{Z}$. On the other hand
\[
\mu(|q|^kr) = \left[\frac{k \log |q| + \log r}{\log |q|} \right] - 1 = k, \quad |q| \leq r < 1.
\]
That is
\[
\mathfrak{M}_v(|q|^kr) = \mathfrak{M}_v(r), \quad |q| \leq r < 1
\]
for all $k \in \mathbb{Z}$. Then we conclude that $\mathfrak{M}_v(r)$ remains bounded for all $r > 0$ which completes the proof.

\[\Box\]

4 Julia Exceptionality

Definition 3. Let $f_n, n \in \mathbb{N}$, be meromorphic functions in a domain G. A sequence $\{f_n(z)\}$ is said to be uniformly convergent to $f(z)$ on G in the Carathéodory-Landau sense [1] if for any point $z_0 \in G$ there exists a disk $K(z_0)$ centered at this point such that $K(z_0) \subset G$ and
\[
(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n > n_0)(\forall z \in K(z_0)) : |f_n(z) - f(z)| < \varepsilon,
\]
whenever $f(z_0) \neq \infty$, or
\[
\left| \frac{1}{f_n(z)} - \frac{1}{f(z)} \right| < \varepsilon,
\]
whenever $f(z_0) = \infty$.
A class of Julia exceptional functions

Note that this convergence is equivalent to the convergence in the spherical metric.

Definition 4. A family \mathcal{F} of meromorphic in \mathbb{C}^* functions is said to be normal if every sequence $\{f_n\} \subseteq \mathcal{F}$ contains a subsequence which converges uniformly in the Carathéodory-Landau sense.

Definition 5. A meromorphic in \mathbb{C}^* function f is called Julia exceptional (see [7]) if for some q, $0 < |q| < 1$, the family $\{f_n(z)\}$, $n \in \mathbb{Z}$, where $f_n(z) = f(q^n z)$, is normal in \mathbb{C}^*.

In \mathbb{C} there are few simple examples of Julia exceptional functions. But in \mathbb{C}^* we have the following.

Let $f \in \mathcal{L}_{qp}$. We have

$$f_n(z) = f(q^n z) = p^n f(z)$$

for every $z \in \mathbb{C}^*$.

If $|p| > 1$, then a limiting function of the family $\{f_n(z)\}$, $n \in \mathbb{Z}$, is ∞. Otherwise, if $|p| < 1$, then a limiting function is 0. If $|p| = 1$, that is $p = e^{i\alpha}$, we have $f_n(z) = e^{i n\alpha} f(z)$. Hence, the set of limit functions depends on α. If $\alpha = \frac{m\pi}{k}$, where $m \in \mathbb{Z}$, $k \in \mathbb{N}$, the number of limiting functions is less than or equals to $2k$. Otherwise, if $\alpha = \pi r$, where $r \in \mathbb{R} \setminus \mathbb{Q}$, the number of limiting functions is infinite.

Example 2. Let $f \in \mathcal{L}_{q^{\alpha}}$ with $\alpha = \frac{\pi}{4}$. Then

$$f_n(z) = f(q^n z) = p^n f(z) = e^{in\frac{\pi}{4}} f(z).$$

Thus, we obtain eight limiting functions

$$\pm f, \pm i f, \left(\frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}\right) f, \left(-\frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}\right) f.$$

Hence, f is Julia exceptional in \mathbb{C}^*.

These results can be summarized as follows.

Theorem 4. Each function $f \in \mathcal{L}_{qp}$ is Julia exceptional in \mathbb{C}^*.

References

Received 07.04.2016

Revised 20.05.2016

Досліджується клас p-локсодромних функцій (мероморфних функцій, що задовольняють умову $f(qz) = pf(z)$ при деяких $q \in C \setminus \{0\}$ для всіх $z \in C \setminus \{0\}$). Доведено, що кожна p-локсодромна функція є Жюліа винятковою. Подано зображення таких функцій та описано розподіл їх нулів та полюсів.

Ключові слова і фрази: p-локсодромна функція, первинна функція Шотткі-Кляйна, Жюліа винятковість.