1. Andriychuk V.I. Algebraic curves over n-dimensional general local fields. Mat. Stud. 2001, 15 (2), 209-214.
  2. Ax J. The elementary theory of finite fields. Ann. Math. 1968, 88 (2), 239-271.
  3. Bruin P. The Tate pairing for abelian varieties over finite fields. J. de theorie des nombres de Bordeaux 2011, 23 (2), 323-328.
  4. Cassels J.W.S., Fröhlich A. (Eds.). Algebraic Number Theory. Mir, Moscow, 1969. (in Russian)
  5. Fesenko I.B., Vostokov S.V. Local Fields and Their Extensions. Transl. Math. Monogr., Amer. Math. Soc., 2001.
  6. Fried M., Jarden M. Field arithmetic. Springer-Verlag, Berlin, 2005.
  7. Lang S. Fundamentals of Diophantine Geometry. Springer-Verlag, Berlin - Heidelberg - New York - Tokyo, 1983.
  8. Nesteruk V.I. On nondegeneracy of Tate product for curves over pseudofinite fields. Visnyk Lviv Univ. Ser. Mech. Math. 2010, 72, 195-200. (in Ukrainian)
  9. Nesteruk V.I. On nondegeneracy of Tate pairing for elliptic curves with good reduction over pseudolocal field. Appl. Problems of Mechanics and Math. 2010, 8, 37-40. (in Ukrainian)
  10. Papikian M. On Tate Local Duality. Seminar "Kolyvagin's Appl. of Euler Systems to Elliptic curves", Massachusetts Inst. of Technology, Spring, 2000.
  11. Platonov V., Rapinchuk A. Algebraic groups and number theory. Academic Press, Boston, 1994.
  12. Serre J.P. Corps locaux. Hermann, Paris, 1968.
  13. Schaefer E. F. A new proof for the non-degeneracy of the Frey-Rück pairing and a connection to isogenies over the base field.World Scientific Publishing, Hackensack, 2005.


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.