1. Baeumer B., Haase M., Kovács M. Unbounded functional calculus for bounded groups with applications. J. Evol. Eqv. 2009, 9 (1), 171-195. doi: 10.1007/s00028-009-0012-z
  2. Balakrishnan A.V. An operational calculus for infinitesimal operators of semigroups. Trans. Amer. Math. Soc. 1960, 91, 330-353. doi: 10.1090/S0002-9947-1959-0107179-0
  3. Butzer P.L., Berens H. Semi-groups of operators and approximation. Springer, London, 2012.
  4. Domanski P., Langenbruch M. On the Laplace Transform for Vector Valued Hyperfunctions. Functiones et Approximatio 2010, 43 (2), 129-159. doi: 10.7169/facm/1291903394
  5. Engel K.-J., Nagel R. One-parameter semigroups for linear evolution equations. Graduate Text in Mathematics, 194. Springer-Verlag, Berlin, 2000.
  6. Hille E., Phillips R. Functional Analysis and Semi-Groups. Amer. Math. Soc., Coll. Publ., 31, Providence R.I., 2000.
  7. Komatsu H. An Introduction to the Theory of Generalized Functions. University Publ., Tokyo, 2000.
  8. Lopushansky O.V., Sharyn S.V. Functional calculus for generators of analytic semigroups of operators. Carpath. Math. Publ. 2012, 4 (1), 83-89. (in Ukrainian)
  9. Lopushansky O.V., Sharyn S.V. Operator calculus for convolution algebra of Schwartz distributions on semiaxis. Mat. Stud. 1997, 7 (1), 61-72.
  10. Nelson E.A. Functional Calculus Using Singular Laplace Integrals. Trans. Amer. Math. Soc. 1958, 88, 400-413. doi: 10.1090/S0002-9947-1958-0096136-8
  11. Sato M. Theory of hyperfunctions. I, II. J. Fac. Sci. Univ. Tokyo 1959/60, 8, 139-193, 387-436.
  12. Vrabie I.I. $C_0$-semigroups and Applications. Mathematics Studies, 191. North-Holland, Amsterdam, 2003.


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.