1. Caputo M. Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astr. Soc. 1967, 13, 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x
  2. Djrbashian M. M. Integral transformations and representations of functions in complex domain. Nauka, Moscow, 1999. (in Russian)
  3. Sheng D. J. Time- and space-fractional partial differential equations. J. Math. Phys. 2005, 46 (1), 13504-13511. doi: 10.1063/1.1819524
  4. Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and pseudodifferential equations of parabolic type. Birkhauser Verlag, Basel-Boston-Berlin, 2004.
  5. Ivasyshen S.D. Green matrices of parabolic boundary value problems. Vyshcha shkola, Kyiv, 1990. (in Russian)
  6. Kilbas A.A., Saigo M. H-Transforms: theory and applications. In: Prudnikov A.P., Dunkl C.F., Glaeske H.-J., Saigo M. (Eds.) Analytical Methods and Special Functions, 9. Chapman and Hall/CRC, London-Washington, 2004.
  7. Kochubei A.N. Fractional-order diffusion. Differential Equations 1990, 26, 485-492. (in Russian)
  8. Kochubei A.N., Eidelman S.D. Equations of one-dimensional fractional-order diffusion. Dop. NAS of Ukraine 2003, 12, 11-16. (in Russian)
  9. Lopushans'ka H.P., Lopushans'kyi A.O. Space-time fractional Cauchy problem in spaces of generalized functions. Ukrainian Math. J. 2013, 64 (8), 1215-1230. doi: 10.1007/s11253-013-0711-z (translation of Ukr. Mat. Zhurn. 2012, 64 (8), 1067-1079)
  10. Shilov G.E. Mathematical Analysis. Nauka, Moscow, 1965. (in Russian)
  11. Titchmarsh E. The Theory of Functions. Oxford University Press, USA, 1976.
  12. Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moskow, 1981. (in Russian)
  13. Voroshylov A.A., Kilbas A.A. Conditions of the existence of classical solution of the Cauchy problem for diffusionwave equation with Caputo partial derivative. Dokl. Ak. Nauk 2007, 414 (4), 1-4. (in Russian)

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.