On the structure of some minimax-antifinitary modules

V. A. Chupordia


Let  $R$  be a ring and $G$ a group. An  $R$-module $A$ is said to be {\it minimax} if $A$ includes a noetherian submodule $B$ such that  $A/B$  is artinian.  The author study a $\mathbb{Z}_{p^\infty}G$-module  $A$ such that $A/C_A(H)$ is minimax as a $\mathbb{Z}_{p^\infty}$-module for every proper not finitely generated subgroup $H$.


minimax module; cocentralizer; module over group ring; minimax-antifinitary $RG$-module; generalized radical group

Full Text: Article References
3 :: 7


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.