Signless Laplacian determinations of some graphs with independent edges

R. Sharafdini, A. Z. Abdian

Abstract


Let $G$ be a simple undirected graph. Then the signless Laplacian matrix of $G$ is defined as $D_G + A_G$ in which $D_G$ and $A_G$ denote the degree matrix and the adjacency matrix of $G$, respectively. The graph $G$ is said to be determined by its signless Laplacian spectrum (DQS, for short), if any graph having the same signless Laplacian spectrum as $G$ is isomorphic to $G$. We show that $G\sqcup rK_2$ is determined by its signless Laplacian spectra under certain conditions, where $r$ and $K_2$ denote a natural number and the complete graph on two vertices, respectively. Applying these results, some   DQS   graphs with independent edges are obtained.

Keywords


spectral characterization, signless Laplacian spectrum, cospectral graphs, union of graphs

Full Text: Article References
3 :: 10

Refbacks

  • There are currently no refbacks.


Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.