References

  1. Arens R. Operational calculus of linear relations. Pacif. J. Math. 1961, 11 (1), 9-23. doi: 10.2140/pjm.1961.11.9
  2. Brown B., Marletta M., Naboko S., Wood I. Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices. J. Lond. Math. Soc. 2008, 77 (3), 700-718. doi: 10.1112/jlms/jdn006
  3. Coddington A.A., de Snoo H.S.V. Positive self-adjoint extensions of positive symmetric subspaces. Math. Z. 1978, 159 (3), 203-214. doi: 10.1007/BF01214571
  4. Derkach V.A., Malamud M.M. Weyl function of Hermitian operator and its connection with characteristic function. Preprint 85-9 (104) Donetsk Phys. Tech. Inst. NAS of Ukraine, Donetsk, 1985. (in Russian)
  5. Derkach V.A., Malamud M.M. The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 1995, 73 (2), 141-242. doi: 10.1007/BF02367240 (translation of Itogi Nauki i Tekhniki Ser. Mat. 1993, 5. (in Russian))
  6. Dijksma A., de Snoo H.S.V. Self-adjoint extensions of symmetric subspaces. Pacif. J. Math. 1974, 54 (1), 71-100. doi: 10.2140/pjm.1974.54.71
  7. Hassi S., de Snoo H.S.V., Sterk A., Winkler H. Finite-dimensional graph perturbations of selfadjoint Sturm-Liouville operators. In: Bakonyi M., Gheondea A. (Eds.) Operator Theory, Structured Matrices, and Dilations: Tiberiu Constantinescu Memorial Volume, 10. Theta Foundation, 2007, 205-226.
  8. Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for differential-operator equations. In: Hazewinkel M. Mathematics and Its Applications (Soviet Series), 48. Kluver Academic Publishers, Dordrecht, 1991. (translation of Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for differential-operator equations. Naukova Dumka, Kyiv, 1984. (in Russian))
  9. Kochubei A.N. Extensions of symmetric operators and symmetric binary relations. Math. Notes 1975, 17 (1), 25-28. doi: 10.1007/BF01093837 (translation of Mat. Zametki 1975, 17 (1), 41-48. (in Russian))
  10. Kochubei A.N. The extensions of nondensely defined symmetric operator. Sib. Math. J. 1977, 18 (2), 225-229. doi: 10.1007/BF00967155 (translation of Sib. Mat. Zh. 1977, 18 (2), 314-320. (in Russian))
  11. Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Nauka, Moscow, 1968. (in Russian)
  12. Krein S.G. (Eds.) Functional Analysis. In: Spravoch. Mat. Bibliot. Nauka, Moscow, 1972. (in Russian)
  13. Langer H., Textorius B. Generalized resolvents of dual pairs of contractions. In: Apostol C., Douglas R.G. (Eds.) Proc. of the Intern. Conf. "Invariant Subspaces and Other Topics", Timişoara and Herculane, Romania, June 1-11, 1981, Birkhäuser, Basel, 1982, 103-118.
  14. Lyantse V.E., Storozh O.G. Methods of the Theory of Unbounded Operators. Naukova Dumka, Kyiv, 1983. (in Russian)
  15. Malamud M.M. On one approach to extension theory of nondensely defined Hermitian operator. Dokl. Akad. Nauk Ukr. SSR Ser. A 1990, 3, 20-26. (in Russian)
  16. Malamud M.M., Mogilevskii V.I. On extensions of dual pairs of operators. Dop. Nat. Akad. Nauk Ukr. 1997, 1, 30-37.
  17. Malamud M.M., Mogilevskii V.I. On Weyl functions and Q-functions of dual pairs of linear relations. Dop. Nat. Akad. Nauk Ukr. 1999, 4, 32-37.
  18. Oliyar Yu.I., Storozh O.G. Criteria of mutual adjointness of proper extensions of linear relations. Mat. Stud. 2013, 40 (1), 71-78.
  19. Pihura O.V., Storozh O.G. A resolvent and conditions of solvability for proper extensions of a linear relation in a Hilbert space. Visn. Lviv Univ. Ser. Mekh. Mat. 2016, 82, 174-185. (in Ukrainian)
  20. Storozh O.G. On some analytic and asymptotic properties of the Weyl function of a nonnegative operator. Mat. Metody Fiz.-Mekh. Polya 2000, 43 (4), 18-23. (in Ukrainian)
  21. Storozh O.H. Some analytic properties of the Weyl function of a closed operator. J. Math. Sci. 2016, 215 (1), 1-10. doi: 10.1007/s10958-016-2817-y (translation of Mat. Metody ta Fiz.-Mekh. Polya 2014, 57 (2), 7-13. (in Ukrainian))

Refbacks

  • There are currently no refbacks.


Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.