References

  1. Tarsy R.B. Global dimension of orders. Trans. Amer. Math. Soc. 1970, 151 (1), 335-340.
  2. Kirichenko V.V. O quasy Frobenious Rings and Gorenstein Orders. Works Math. Inst. Sci. Acad USSR 1978, 148, 168-174.
  3. Kirichenko V.V. On semiperfect rings of injective dimension one. Sao Paulo J. Math. Sci. 2007, 1 (1), 111-132.
  4. Kirichenko V.V., Zhuravlev V.M., Chernousova Zh.T. Cyclic Gorenstein oreders. Reports of Nation. Acad. of Sci. of Ukraine, Ser: Math., Nature and Tech. Sci. 2003, 4, 7-11.
  5. Hazewinkel M., Gubareni N., Kirichenko V. Algebras, Rings and Modules. In: Mathematics and Its Applications, 1 (575). Kluwer Acad. Publish., 2004.
  6. Hazewinkel M., Gubareni N., Kirichenko V. Algebras, Rings and Modules. In: Mathematics and Its Applications, 2 (586). Springer, Dordrecht, 2007.
  7. Zavadskii A.G., Kirichenko V.V. Torsion-free modules over primary rings. J. Soviet Math. 1979, 11 (4), 598-612. doi: 10.1007/BF01087094 (translation of Zap. Nauch. Seminar. Leningrad. Otdel. Mat. Steklov. Inst. (LOMI) 1976, 57, 100-116. (in Russian))
  8. Tuganbaev A.A. Semidistributive modules and rings. Kluwer Acad. Publ., Dordrecht, 1998.
  9. Kirichenko V.V., Khibina M.A. Semi-perfect semi-distributive rings. Infinite Groups and Related Algebraic Topics, Institute of Mathematics NAS Ukraine, 1993, 457-480.
  10. Zhuravlev V.M. Permutations which determine the ideals of a Gorenstein order. Bull. Kyiv Taras Shevchenko Univ., Ser: Phis. and Math. Sci. 2002, 3, 23-27.
  11. Zhuravlev V.N., Zelensky A.V. On one class of Gorenstein tiled oreders. Bull. Gomel State F. Skorina Univ. 2006, 3, 147-154.
  12. Zhuravlev V.M., Zhuravlev D.V. On exponent matrices of Gorenstein orders. Bull. Kyiv Taras Shevchenko Univ. Ser: Phis. and Math. Sci. 2006, 4, 18-22.
  13. Plakhotnyk M. On the dimension of Kirichenko space. Algebra Discrete Math. 2006, 2, 87-126.

Refbacks

  • There are currently no refbacks.


Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.