1. Berezansky Yu.M. Expansion on eigenfunctions of selfadjoint operators. Kiev, Naukova dumka, 1965. (in Russian)
  2. Gelfand I.M., Shilov G.E. Generalized Functions, Vol. 2: Spaces of Fundamental and Generalized Functions, AMS Chelsea Publ., 2016.
  3. Gorodetskii V.V., Litovchenko V.A. The Cauchy Problem for pseudodifferential equations in spaces of generalized functions of type $S'$. Dopov. Nats. Akad. Nauk Ukr. 1992, 10, 6-9. (in Ukrainian)
  4. Litovchenko V.A., Dovzhytska I.M. Cauchy problem for a class of parabolic systems of Shilov type with variable coefficients. Cent. Eur. J. Math. 2012, 10 (3), 1084-1102.
  5. Lopushanska H., Lopushanskyj A., Pasichnyk E. The Cauchy problem in a space of generalized functions for the equations possessing the fractional time derivarive. Sib. Math. J. 2011, 52 (6), 1288-1299.
  6. Los V.M., Murach A.A. Parabolic mixed problems in spaces of generalized smoothness. Dopov. Nats. Akad. Nauk Ukr. (2014), 6, 23-31. (in Ukrainian)
  7. Matijchuk M.I. Parabolic and elliptic problems in Dini spaces. Chernivtsi, 2010. (in Ukrainian)
  8. Matijchuk M.I. The connection between fundamental solutions of parabolic equations and fractional equations. Bukovinian Math. J. 2016, 4, no 3-4, 101-114. (in Ukrainian)
  9. Mikhailets V.A., Murach A.A. Hormander spaces, unterpolation, and elliptic problems. Birkhauser, Basel, 2014.
  10. Virchenko N.O., Rybak V.Ya. Fundamentals of fractional integro-differentiation. Zadruga, Kyiv, 2007. (in Ukrainian)
  11. Kochubei A. N. The Cauchy problem for evolutionary equation of fractional order. Differ. Equ. 1989, 25 (8), 1359-1368. (in Russian)
  12. Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Birkhauser Verlag, Basel-Boston-Berlin, 2004.
  13. Luchko Yu. Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009, 12 (4), 409-422.
  14. Meerschaert M.M., Erkan N., Vallaisamy P. Fractional Cauchy problems on bounded domains. Ann. Probab. 2009, 37, 979-1007.
  15. Voroshylov A.A., Kilbas A.A. Conditions of the existence of classical solution of the Cauchy problem for diffusion-wave equation with Caputo partial derivative. Dokl. Ak. Nauk 2007, 414 (4), 1-4.
  16. Aleroev T.S., Kirane M., Malik S.A. Determination of a source term for a time fractional diffusion equation with an integral type over-determination condition. Electron. J. Differential Equations 2013, 2013 (270), 1-16.
  17. El-Borai M.M. On the solvability of an inverse fractional abstract Cauchy problem. LJRRAS 2001, 4, 411-415.
  18. Ismailov M.I. Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 2016, 40 (7/8), 4891-4899.
  19. Janno J., Kasemets K. Unequeness for an inverse problem foe a senilinear time-fractional diffusion equation. Inverse Probl. Imaging 2017, 11, 125-149.
  20. Jin B., Rundell W. A turorial on inverse problems for anomalous diffusion processes. Inverse Problems, 2015, 31, 1-40. doi: 10.1088/0266-5611/31/3/035003
  21. Lopushansky A. Solvability of inverse boundary value problem for equation with fractional derivative. Visnyk of the Lviv Univ. Series Mech. Math. 2014, 79, 97-110. (in Ukrainian)
  22. Lopushansky A., Lopushanska H. Inverse source Cauchy problem to a time fractional diffusion-wave equation with distributions. Electron. J. Differential Equations 2017, 2017 (182), 1-14.
  23. Sakamoto K., Yamamoto M. Initial value/boundary-value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382 (1), 426-447.
  24. Zhang Y., Xu X. Inverse source problem for a fractional diffusion equation. Inverse Problems 2011, 27, 1-12.
  25. Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moskow, 1981. (in Russian)


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.