References

  1. Alencar R., Aron R., Galindo P., Zagorodnyuk A. Algebra of symmetric holomorphic functions on $\ell _p$. Bull. Lond. Math. Soc. 2003, 35, 55-64.
  2. Chernega I., Galindo P., Zagorodnyuk A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. (2) 2012, 55, 125-142.
  3. Chernega I., Galindo P., Zagorodnyuk A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl. 2012, 395, 569-577.
  4. Chernega I., Galindo P., Zagorodnyuk A. A multiplicative convolution on the spectra of algebras of symmetric analytic functions. Rev. Mat. Complut. 2014, 27 (2), 575-585.
  5. Chernega I., Zagorodnyuk A. Unbounded symmetric analytic functions on $\ell_1$. Math. Scand. 2018, 122 (1), 84-90.
  6. Defant A., Kalton N. Unconditionality in spaces of $n$-homogeneous polynomials. Q. J. Math. 2005, 56 (1), 53-64. doi: 10.1093/qmath/hah022
  7. Dineen S. Complex Analysis in Locally Convex Spaces. North-Holland, Mathematics Studies, Amsterdam, New York, Oxford, 57(1981).
  8. Dineen S., Mujica J. A monomial basis for the holomorphic functions on $ c_{0}$. Proc. Amer. Math. Soc. 2013, 141, 1663-1672. doi: 10.1090/S0002-9939-2012-11436-4
  9. Galindo P., Vasylyshyn T., Zagorodnyuk A. The algebra of symmetric analytic functions on $L_\infty$. Proc. Roy. Soc. Edinburgh Sect. A 2017, 147 (4), 743-761. doi: 10.1017/S0308210516000287
  10. Galindo P., Vasylyshyn T., Zagorodnyuk A. Symmetric and finitely symmetric polynomials on the spaces $\ell_\infty$ and $L_\infty[0,+\infty).$ Math. Nachr. 2018, 291, 1712-1726. doi: 10.1002/mana.201700314
  11. Galindo P., Vasylyshyn T., Zagorodnyuk A. On the algebra of symmetric analytic functions on $L_\infty$}. Preprint.
  12. González M., Gonzalo R., Jaramillo J. Symmetric polynomials on rearrangement invariant function spaces. J. Lond. Math. Soc. (2) 1999, 59 (2), 681-697.
  13. Szarek S. A Banach space without a basis which has the bounded approximation property. Acta Math. 1987, 159, 81-98.
  14. Venkova M. Global Schauder decomposition of locally convex spaces. Math. Scand. 2007, 101, 65-82.

Refbacks

  • There are currently no refbacks.


Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.