1. Spohn H. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 1980, 53 (3), 569-615.
  2. Cercignani C., Gerasimenko V.I., Petrina D.Ya. Many-Particle Dynamics and Kinetic Equations. Kluwer Acad. Publ., The Netherlands, 1997.
  3. Gallagher I., Saint-Raymond L., Texier B. From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. In: Zürich Lectures in Advanced Mathematics, 18. EMS, 2014.
  4. Pulvirenti M., Saffirio C., Simonella S. On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 2014, 26 (2), 1450001. doi: 10.1142/S0129055X14500019
  5. Bogolyubov M.M. Lectures on Quantum Statistics. Problems of Statistical Mechanics of Quantum Systems. Rad. Shkola, Kyiv, 1949. (in Ukrainian)
  6. Saint-Raymond L. Kinetic models for superfluids: a review of mathematical results. C. R. Physique. 2004, 5, 65-75. doi: 10.1016/j.crhy.2004.01.005
  7. Lieb E., Seiringer R., Solovej J.P., Yngvason J. The mathematics of the Bose gas and its condensation. In: Oberwolfach Seminars, 34. Birkhäuser Verlag, Basel, 2005.
  8. Bao W., Cai Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 2013, 6 (1), 1-135.
  9. Semkat D., Kremp D., Bonitz M. Kadanoff-Baym equations with initial correlations. Phys. Rev. E. 1999, 59 (2), 1557-1562.
  10. Kadanoff L.P., Baym G. Quantum Statistical Mechanics. W.A. Benjamin, 1962.
  11. Pezzotti F., Pulvirenti M. Mean-field limit and semiclassical expansion of quantum particle system. Ann. Henri Poincaré 2009, 1, 145-187. doi: 10.1007/s00023-009-0404-1
  12. Fröhlich J., Graffi S., Schwarz S. Mean-field and classical limit of many-body Schrödinger dynamics for bosons. Comm. Math. Phys. 2007, 271, 681-697. doi: 10.1007/s00220-007-0207-5
  13. Erdös L., Schlein B., Yau H.-T. Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 2007, 167 (3), 515-614. doi: 10.1007/s00222-006-0022-1
  14. Erdös L., Schlein B., Yau H.-T. Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. of Math. Stud. 2010, 172 (1), 291-370. doi: 10.4007/annals.2010.172.291
  15. Borgioli G., Gerasimenko V.I. Initial-value problem of the quantum dual BBGKY hierarchy. Il Nuovo Cimento C 2010, 33 C (1), 71-78. doi: 10.1393/ncc/i2010-10564-6
  16. Gerasimenko V.I. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinet. Relat. Models 2011, 4 (1), 385-399. doi: 10.3934/krm.2011.4.385
  17. Banasiak J., Lachowicz M. Methods of Small Parameter in Mathematical Biology. Birkhäuser, Boston, 2014.
  18. Gerasimenko V.I., Tsvir Zh.A. Mean field asymptotics of generalized quantum kinetic equation. Rep. Math. Phys. 2012, 70 (2), 135-147. doi: 10.1016/S0034-4877(12)60034-2
  19. Gerasimenko V.I., Polishchuk D.O. A nonperturbative solution of the nonlinear BBGKY hierarchy for marginal correlation operators. Math. Methods Appl. Sci. 2013, 36 (17), 2311-2328. doi: 10.1002/mma.2753
  20. Gerasimenko V.I., Tsvir Zh.A. On quantum kinetic equations of many-particle systems in condensed states. Phys. A 2012, 391 (24), 6362-6366. doi: 10.1016/j.physa.2012.07.061
  21. Gerasimenko V.I., Tsvir Zh.A. A description of the evolution of quantum states by means of the kinetic equation. J. Phys. A: Math. Theor. 2010, 43 (48), 485203. doi: 10.1088/1751-8113/43/48/485203


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.