Direct analogues of Wiman's inequality for analytic functions in the unit disc

O. B. Skaskiv, A. O. Kuryliak

Abstract


Let $f(z)=\sum_{n=0}^{\infty} a_n z^n$ be an analytic function on $\{z:|z|<1\},\ h\in H$ and $\Omega_f(r)= \sum_{n=0}^{\infty} |a_n| r^n$. If
$$
\beta_{fh}=\liminf\limits_{r\to1}\frac{\ln\ln\Omega_f(r)}{\ln h(r)}=+\infty,
$$
then Wiman's inequality $M_f(r)\leq \mu_f(r) \ln^{1/2+\delta}\mu_f(r)$ is true for all $r\in (r_0, 1)\backslash E(\delta)$, where $h-\mbox{meas}\ E<+\infty.$

Full Text: PDF (Українська)
3 :: 2

Refbacks

  • There are currently no refbacks.


Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.