References

  1. Arens R. Extension of functions on fully normal spaces. Pacific J. Math. 1952, 2 (1), 11-22.
  2. Duszynski Z., Grande Z., Ponomarev S. On the $\omega$--primitives. Math. Slovaca 2001, 51, 469-476.
  3. Engelking R. General topology. Mir, Moscow, 1986. (in Russian)
  4. Ewert J., Ponomarev S. On the existence of $\omega$-primitives on arbitrary metric spaces. Math. Slovaca 2003, 53, 51-57.
  5. Kostyrko P. Some properties of oscillation. Math. Slovaca 1980, 30, 157-162.
  6. Kowalczyk S. The $\omega$-problem. Diss. math. 2014, 501, 1-55. doi: 10.4064/dm501-0-1
  7. Maslyuchenko O.V. Decomposition of semi-continuous functions into the sum of quasi-continuous functions and the oscillation of almost continuous functions. Math. Stud. 2011, 35 (2), 205-214. (in Ukrainian)
  8. Maslyuchenko O.V. The attainable spaces and their analogues. Math. Stud. 2012, 37 (1), 98-105. (in Ukrainian)
  9. Maslyuchenko O.V., Maslyuchenko V.K. The construction of a separately continuous function with given oscillation. Ukrainian Math. J. 1998, 50 (7), 1080-1090. doi: 10.1007/BF02528836 (translation of Ukrain. Mat. Zh. 1998, 50 (7), 948-959. (in Ukrainian))
  10. Maslyuchenko O.V. The construction of $\omega$-primitives: strongly attainable spaces. Math. Bull. Shevchenko Sci. Soc. 2009, 6, 155-178. (in Ukrainian)
  11. Maslyuchenko O.V. The construction of $\omega$-primitives: the oscillation of sum of functions. Math. Bull. Shevchenko Sci. Soc. 2008, 5, 151-163. (in Ukrainian)
  12. Maslyuchenko O.V., Onypa D.P. The limiting oscillations of locally constant functions. Bukovinian Math. J. 2013, 1 (3-4), 97-99. (in Ukrainian)
  13. Herasymchuk V.H., Maslyuchenko O.V. The oscillation of separately locally Lipschitz functions. Carpathian Math. Publ. 2011, 3 (1), 22-33. (in Ukrainian)
  14. Maslyuchenko O.V. The oscillation of quasi-continuous functions on pairwise attainable spaces. Houston J. Math. 2009, 35 (1), 113-130.

Refbacks

  • There are currently no refbacks.


Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.