1. Blair D.E. Contact Manifolds in Riemannian Geometry. In: Lecture Notes in Mathematics, 509. Springer-Verlag Berlin Heidelberg, Berlin-New-York, 1976. doi: 10.1007/BFb0079307
  2. Calin C. Contributions to geometry of CR-Submanifold. Phd Thesis, Univ. Al. I. Cuza Iaşi., Romania, 1998.
  3. Bejancu A. CR-submanifolds of a Kahler manifold. I. Proc. Amer. Math. Soc. 1978, 69 (1), 135-142. doi: 10.1090/S0002-9939-1978-0467630-0
  4. Bejancu A., Papaghiuc N. Semi-invariant submanifolds of a Sasakian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N. S.) 1981, 17 (1), 163-170.
  5. Golab S. On semi-symmetric and quarter symmetric linear connections. Tensor (N.S.) 1975, 29 (3), 249-254.
  6. Goldberg S.I., Yano K. On normal globally framed $f$-manifolds. Tohoku Math. J. 1970, 22 (3), 362-370.
  7. Mishra R.S., Pandey S.N. On quarter symmetric metric $F$-connections. Tensor (N.S.) 1980, 34 (1), 1-7.
  8. Rahman Sh. Transversal hypersurfaces of almost hyperbolic contact manifolds with a quarter symmetric non metric connection. TWMS J. Appl. Eng. Math. 2013, 3 (1), 108-116.
  9. Rahman Sh. Characterization of quarter symmetric non metric connection on transversal hypersurface of Lorentzian para Sasakian manifolds. J. Tensor Soc. 2014, 8, 65-75.
  10. Yano K. On a structure defined by a tensor field $f$ of type $\left( 1,1\right)$ satisfying $f^{3}+f=0$. Tensor (N.S) 1963, 14, 99-109.


  • There are currently no refbacks.

Creative Commons License
The journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported.